Sign in to join our Clean Health club

By Stefan Ianev

In part 1 of this article we talked about the importance of hydrochloric acids as a first line of intervention for promoting good gut health. 

Once food passes through the stomach, the small intestine is the next major stage of digestion where most of the absorption of nutrients and minerals takes place. The small intestine also supports the body’s immune system. The presence of gut flora appears to contribute positively to the host’s immune system (1).

Our gut microbiome is made up of trillions of bacteria and other microorganisms that reside in the lower intestine and colon. The microbiota plays a huge role in our health and serves many important purposes such as strengthening gut integrity and shaping the intestinal epithelium, digesting fibre, regulating energy metabolism, protecting against pathogens, regulating immune function, and brain health (1-6).

There are thousands of different types of bacteria in our intestines, most of which are beneficial to our health. However, when there is an overgrowth of pathogenic or harmful bacteria, yeasts and/or parasites, and too few beneficial bacteria, called dysbiosis, it can adversely impact our health and body composition. Dysbiosis has been linked to obesity, inflammation, insulin resistance, inflammatory bowel disease, IBS, allergies, asthma, cardiovascular disease, and mental health issues (7-12).

Several well-known studies have shown that the gut microbiome differed completely between lean and obese identical twins, suggesting that differences in the microbiome were not genetic (13,14). Several factors such as antibiotics, psychological and physical stress, certain dietary components including sulphates, animal proteins, simple sugars and refined carbohydrates, and artificial sweeteners have been found to contribute to intestinal dysbiosis (15-17).

The primary symptoms associated with dysbiosis include diarrhea, abdominal pain, and bloating (18). Small Intestinal Bacterial Overgrowth (SIBO) is a form of gut dysbiosis where there is an increase in the number and/or an alteration in the type of bacteria residing in the small intestine. Non-invasive hydrogen and methane breath tests are most commonly used by medical practitioners for the diagnosis of SIBO (19). 

Treatment for dysbiosis and SIBO generally involves antibiotics, such as ciprofloxacin (Cipro), metronidazole (Flagyl) or rifaximin (Xifaxan). Antibiotics decrease the number of bacteria in the intestine, but they also wipe out the good bacteria which can adversely impact our health, and they don’t do anything to address the underlying issue that caused the problem in the first place. 

Studies have shown that in nearly 50 percent of patients treated for SIBO with antibiotics, the SIBO will relapse within 9 months (20). Old age and chronic use of PPI medication were both significantly correlated with recurrence.

Herbal antimicrobials have been shown to be at least as effective or more effective that antibiotics in the treatment of SIBO without causing adverse side effects (21). Probiotics have also been shown to be effective for the treatment of dysbiosis and SIBO (22-25). One study found probiotics were more effective than antibiotics for treating SIBO (23). Another study found that probiotics following antibiotic treatment resulted in a much lower rate of relapse (only 7% vs 33%) 6 months post treatment (24).

Some alternative health care practitioners recommend a low fibre and low FODMAP diet while undergoing antibiotic or antimicrobial treatment for SIBO. FODMAP is an acronym for fermentable oligosaccharides, disaccharides, monosaccharides, and polyols. Since bacteria feed on these prebiotic foods, the reason for cutting them out is to starve off the excess bacteria.

This practice is not currently supported by the literature and may even be harmful. Several studies have shown that a low FODMAP or low fibre diet can lead to a reduction in beneficial bacteria and an increase in mucus-degrading bacteria, which enhances pathogen susceptibility (26-28). 

The graphic below from Desai et at (28) illustrates how regular consumption of dietary fibre helps prevent erosion of the intestinal mucus barrier by the gut microbiome, blunting pathogen infection and reducing the incidence of colitis.

A close up of text on a white background

Description automatically generated

Other studies have shown that healthy individuals can have SIBO without any GI symptoms or alterations in microbial composition, while microbial composition was significantly altered in patients with GI symptoms, even in the absence of SIBO (29). 

When healthy individuals with SIBO were placed on a low fibre diet for 7 days, 80% of them developed GI symptoms, even though some of the subjects tested negative for SIBO after the intervention (29). All the symptoms resolved within a week of discontinuing the diet. 

It appears that the small intestinal microbial composition i.e. the ratio of good to bad gut bacteria is much more strongly associated with GI symptoms than the overgrowth of bacteria, and dietary fibre plays an important role in improving the microbial composition.  

There are other foods which have also been shown to improve the gut microbe composition including:

  • Eating a diverse range of foods (30)
  • Fruits and vegetables (31,32)
  • Fermented foods such as yogurt (33,34)
  • Prebiotic foods such as those containing resistant starch and fibre (35)
  • Whole grains (36,37)
  • Foods rich in polyphenols such as tea, fruits, vegetables, and red wine (38-40)

Additionally, breastfeeding is especially important for the development of the gut microbiome and is associated with lower rates of allergies, obesity and other diseases that may be due to differences in the gut microbiota (41,42).

Furthermore, a newborns’ consumption of fibre and oligosaccharides is directly linked to the mother’s diet, and the current dietary recommendations for pregnant mothers around the globe fall short in addressing the importance of dietary fibre intake for enhancing mother’s health and establishing the developing infant microbiome (43). 

Exercise has also been shown to have a beneficial effect on the gut microbiota, and thus this could be another factor by which exercise promotes well-being, since gut microbiota appears to be closely related to health and disease (44).

Hopefully, now you can appreciate the importance of the of having a diverse and healthy gut microbiome, and why it is important to consume a high fibre, nutrient dense, and diversified diet. 

We are going to wrap up part 3 of this blog with a discussion on food intolerances and food sensitivities.  

Want to learn how to design scientifically grounded nutrition and diet programs safely and effectively to help you maximize client results again and again, with a trialled and tested system that actually works?
Register for the Performance Nutrition Coach Certification Bundle, which includes the Level 1&2 online courses!
CLICK HERE TO ENROL NOW!

References

  1. Lazar V, Ditu LM, Pircalabioru GG, et al. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol. 2018;9:1830. Published 2018 Aug 15. doi:10.3389/fimmu.2018.01830
  2. Natividad JMM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol. Res. 2013;69, 42–51 doi:10.1016/j.phrs.2012.10.007
  3. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54, 2325–2340 doi:10.1194/jlr.R036012
  4. Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535, 85–93 doi:10.1038/nature18849
  5. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016; 352, 539–544 doi:10.1126/science.aad9378
  6. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012
  7. Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, Stanton C. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016 May;92(1087):286-300. doi: 10.1136/postgradmedj-2015-133285. Epub 2016 Feb 24.
  8. Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017;2:17004. Published 2017 Feb 13. doi:10.1038/nmicrobiol.2017.4
  9. Distrutti E, Monaldi L, Ricci P, Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J Gastroenterol. 2016;22(7):2219–2241. doi:10.3748/wjg.v22.i7.2219
  10. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191. Published 2015 Feb 2. doi:10.3402/mehd.v26.26191
  11. Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol. 2016 Mar;12(3):169-81. doi: 10.1038/nrneph.2015.191. Epub 2015 Nov 30.
  12. Kharrazian, D. (2013). Why Isn’t My Brain Working? Carlsbad, CA: Elephant Press, p. 173.
  13. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. doi:10.1038/nature07540
  14. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. doi:10.1126/science.1241214
  15. Spreadbury I. Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity. Diabetes Metab Syndr Obes. 2012;5:175–189. doi:10.2147/DMSO.S33473
  16. Hawrelak JA, Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev. 2004 Jun;9(2):180-97.
  17. Palmnäs MS, Cowan TE, Bomhof MR, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9(10):e109841. Published 2014 Oct 14. doi:10.1371/journal.pone.0109841
  18. Saffouri GB, Shields-Cutler RR, Chen J, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun. 2019;10(1):2012. Published 2019 May 1. doi:10.1038/s41467-019-09964-7
  19. Bures J, Cyrany J, Kohoutova D, et al. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol. 2010;16(24):2978–2990. doi:10.3748/wjg.v16.i24.2978
  20. Lauritano EC, et al. Small intestinal bacterial overgrowth recurrence after antibiotic therapy. Am J Gastroenterol. 2008 Aug;103(8):2031-5.
  21. Chedid V, Dhalla S, Clarke JO, et al. Herbal therapy is equivalent to rifaximin for the treatment of small intestinal bacterial overgrowth. Glob Adv Health Med. 2014;3(3):16–24. doi:10.7453/gahmj.2014.019
  22. Leventogiannis K, Gkolfakis P, Spithakis G, et al. Effect of a Preparation of Four Probiotics on Symptoms of Patients with Irritable Bowel Syndrome: Association with Intestinal Bacterial Overgrowth [published correction appears in Probiotics Antimicrob Proteins. 2018 Mar 28;:]. Probiotics Antimicrob Proteins. 2019;11(2):627–634. doi:10.1007/s12602-018-9401-3
  23. Soifer LO, Peralta D, Dima G, Besasso H. [Comparative clinical efficacy of a probiotic vs. an antibiotic in the treatment of patients with intestinal bacterial overgrowth and chronic abdominal functional distension: a pilot study]. Acta Gastroenterol Latinoam. 2010 Dec;40(4):323-7.
  24. Khalighi AR, Khalighi MR, Behdani R, et al. Evaluating the efficacy of probiotic on treatment in patients with small intestinal bacterial overgrowth (SIBO)–a pilot study. Indian J Med Res. 2014;140(5):604–608.
  25. McFarland LV. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open. 2014;4(8):e005047. Published 2014 Aug 25. doi:10.1136/bmjopen-2014-005047
  26. Staudacher HM, Lomer MC, Anderson JL, et al. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J Nutr. 2012;142(8):1510–1518.
  27. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015;64(1):93–100.
  28. Desai MS, Seekatz AM, Koropatkin NM, et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016;167(5):1339–1353.e21. 
  29. Saffouri, G.B., Shields-Cutler, R.R., Chen, J. et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun 10, 2012 (2019) doi:10.1038/s41467-019-09964-7
  30. Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab. 2016;5(5):317–320. Published 2016 Mar 5. doi:10.1016/j.molmet.2016.02.005
  31. Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM3.Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota.
  32. Shinohara K, Ohashi Y, Kawasumi K, Terada A, Fujisawa T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe. 2010 Oct;16(5):510-5. doi: 10.1016/j.anaerobe.2010.03.005. Epub 2010 Mar 19.
  33. Alvaro E, Andrieux C, Rochet V, Rigottier-Gois L, Lepercq P, Sutren M, Galan P, Duval Y, Juste C, Doré J. Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt. Br J Nutr. 2007 Jan;97(1):126-33.
  34. Veiga P, et al. Changes of the human gut microbiome induced by a fermented milk product. Sci Rep. 2014 Sep 11;4:6328. doi: 10.1038/srep06328.
  35. Parnell JA, Reimer RA. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes. 2012;3(1):29–34. doi:10.4161/gmic.19246
  36. Martínez I, Lattimer JM, Hubach KL, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013;7(2):269–280. doi:10.1038/ismej.2012.104
  37. Cooper DN, Martin RJ, Keim NL. Does Whole Grain Consumption Alter Gut Microbiota and Satiety?. Healthcare (Basel). 2015;3(2):364–392. Published 2015 May 29. doi:10.3390/healthcare3020364
  38. Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013 Aug;24(8):1415-22. doi: 10.1016/j.jnutbio.2013.05.001.
  39. van Duynhoven J, Vaughan EE, Jacobs DM, et al. Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(Suppl 1):4531–4538. doi:10.1073/pnas.1000098107
  40. Queipo-Ortuño MI, et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012 Jun;95(6):1323-34. doi: 10.3945/ajcn.111.027847. Epub 2012 May 2.
  41. Bäckhed F, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015 May 13;17(5):690-703. doi: 10.1016/j.chom.2015.04.004.
  42. Stuebe A. The risks of not breastfeeding for mothers and infants. Rev Obstet Gynecol. 2009;2(4):222–231.
  43. Çavdar G, Papich T, Ryan EP. Microbiome, Breastfeeding and Public Health Policy in the United States: The Case for Dietary Fiber. Nutr Metab Insights. 2019;12:1178638819869597. Published 2019 Aug 21. doi:10.1177/1178638819869597

 Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Front Physiol. 2016;7:51. Published 2016 Feb 18. doi:10.3389/fphys.2016.00051

Are you looking for help with your Training and Nutrition?

We offer a range of certified online courses now 25% off and products that will help educate you on the latest in training and nutrition protocols to help you advance your physique and wellbeing

Click Here for our Guidebooks & Online Courses